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Abstract 
The future development when an insurance company is in a difficult circumstance can be 

described by a stochastic process which the insurance company is tasked to manage 

effectively in order to achieve best goal of the company. Application of an effective risk or 

loss management model in an insurance company brings in more revenue for the insurer and 

less conditional pay-out of claims to the insured. Insurance losses, risks and premium 

calculation or pricing have been active and essential topics in insurance and actuarial 

literatures but most of these literatures did not only stand the test of time due to dynamic 

nature of insurance principles and practices in highly evolving environment but also lack the 

intuitive and detailed standard rating logic to adjust loss rating to a particular experience. 

There is a need to strike a balance in charging an appropriate and equitable premium by 

applying a suitable loss model that gives a sufficient uniquely determined solution that will 

not necessarily put an insurer or the insured in uncertain awkward business situations. 

Therefore, the objective of this research is to obtain sufficient conditions for convergence of 

algorithm towards a fixed point under typical insurance loss and actuarial circumstances to 

achieve a uniquely determined solution. At the end, a unique fixed point was determined and 

the algorithm formulated converges towards that point through straightforward and simplified 

generalised formulae and functions. 
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1. Background to the Study. 

The future development when an insurance company is in a difficult circumstance can 

be described by a stochastic process which the insurance company is tasked to manage 

effectively in order to achieve best goal of the company. Fixed point theorem is very general 

but we shall narrow its application to insurance business problem to get precise formulation. 

In studying some nonlinear phenomena, fixed point theorem is an important and powerful tool 

that can be applied in many fields. This research paper attempts to apply fixed point theorem 

in the areas of insurance business just as it has been applied to geometry, analysis, number 

theory, set theory, group theory, algebra, dynamics, topology and so on. It is noteworthy to 

explain briefly what a fixed point theory means. According to (Rajic, Azdejkovic, & Loncar, 

2014), fixed point theorem concerns itself with the examination of the existence of a certain 

point, say y, in the domain of a function, say g, where g(y)=y. The identical function mapping 

and the function values are equal. This means that any marginal change in the function of y 

will proportionally result to additional fixed points. If g(y) = y then g(y) - y =0. Therefore if a 

certain function  f  is shown as f(y) = g(y) – y, function g has zero as the fixed point. If Y is a 

set and g:Y → Y is a map from Y to Y, a point  y Є Y is known as a fixed point of g since 

g(y) = y. For a family of G of Y, G is a semigroup or group. Here the fixed point theorem 

gives specific condition on Y and G ensures that there exists a simultaneous fixed point in y Є 

Y for g Є G. If G is a group F, it arises from a group action Ω:F*Y→Y of F on Y. If Ω(F, Y) 

:= fy, it is assumed that 1 of  F is the identity of Y. Also, if a Є F and y Є Y  for all f  such 

that (fa)y = f(ay) such y = F-space, Y = topological space, F = topological ground and  Ω is 

jointly continuous. If there exists an action group F on x where Y(power set)=P(x), it leads to 

an action of F on P(x) and the F-invariant (subset of X) is the fixed point of the new action. In 

other words, the fixed point theorem leads to an F-invariant set. Under the existence of Haar 

measure ᴪ on a compact topological group F, left invariance indicates that ᴪ is F- fixed due 

to the action of F by left translation on the space N +(F) of any finite positive measure on F. If 

ᴪ is normalised and finite so that  ᴪ(F)= 1, it can be referred to as F-fixed point under the 

action of  F on the convex set of normalised measure on F 

The research work of (Fu & Wu, 2005) concentrated extensively on the iterations of 

loss rating algorithms while in the research work of (Borogovac, 2014), the clear concept of 

Loss Ratio Method (also known as the Standard Rating Method) was introduced. All these 

and many other similar papers lack the intuitive and detailed standard rating logic to adjust 

loss rating to a particular experience. The objective of this research is to obtain sufficient 

conditions for convergence of algorithm towards a fixed point under typical insurance loss 

and actuarial circumstances to achieve a uniquely determined solution. This paper will 

address the shortcoming of the actuarial algorithms sighted in a concise manner. The paper 

will be significant and serves as a solid foundation for further research on the application of 

fixed point theorem in insurance premium calculation, pricing or fixing because the demand 

for insurance products is majorly a function of the cost of insurance and the premium charged 

by insurers.  
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2. Brief Review. 

 Fixed point theories came to limelight in Mathematics in the 19th century. Henry 

Poincare applied them in nonlinear problem topological analysis.  After Poincare in 1886, 

L.E.J (Bertus) Brouwer also contributed to the development of fixed point theorem in 1912 

according to (Khalehoghli, Rahimi, & Gordji, 2020).  (Istratescu, 1981) shed more light on 

how Brouwer’s fixed point theorem gave better understanding on differential equations 

worked on by Charles Emile Picard and Henri Poincare. Brouwer was the first to prove that 

the fixed point theorem for the function of x is x (that is,  f(x) = x). It follows that any 

continuous function g mapping compact convex set to itself, there exists a point y0 such that 

g(y0) = y0. For a continuous function g from a closed interval ci in the real numbers from a 

closed disk cd to itself, there exists at least a fixed point. Also, every continuous function in a 

Euclidean space from a closed ball into itself must equally have a fixed point. This theorem 

holds for endomorphic functions which have the same set as range and the domain. But 

consider a function g(y) = y+1 with domain [-1, 1] and the range [0, 2]. Here function g is not 

an endomorphism because if the same continuous function from R to itself is considered, it 

will have no fixed point as it shifts to the right. The fixed point theorem proved by Brouwer 

became an eye opener and widely used by many people as it is pervasive and diverse in 

mathematical applications. The theorem pioneered and broadened a number/degree of 

generalisations to different aspects of scientific disciplines. (Von-Neumann, 1928), in his 

work, used Brouwer’s theorem to prove the existence of balanced growth equilibrium and 

minimax solution to expanding economy and two-agent game respectively. In the same vein, 

Kakutani in 1941 further developed and extended the work of Brouwer to prove the fixed 

point theorem for a sphere, square and their equivalent n-dimensional counterparts. According 

to (Nash, 1951), the work of Kakutani in 1941 made it simple to use fixed point theorem to 

prove the complex theorem in non-cooperative games. (Nieto & Guez-Lo’pez, 2005) showed 

how Banach, in 1922, demonstrated that contractive mapping with complete domain 

possesses a unique and peculiar fixed point. The Banach Principle was latter extended by 

Nadler in 1969 and applied to set valued mapping in metric space. 

Insurance losses, risks and premium calculation, pricing or fixing have been active and 

essential topics in insurance and actuarial literatures as examined by Goovaert, De-Vylder and 

(Goovaerts, De Vylder, & Haezendonck, 1984). In their work, they examined insurance 

premium and its theory with application. This work did not stand the test of time due to 

dynamic nature of insurance principles and practices in highly evolving environment. 

(Hurlimann, 1997) researched on quasi-mean value principles while mathematics methods in 

risk theory was worked on by (Buhmann, 1970) but situations of things are different now as 

most of these theories and principles are outdated or inefficient now, although they were 

exceptional and outstanding at that time interval. In the same vein, the insurance premium 

calculation in relation to modern theories and risk choices under uncertainty have been 

studied in the work of (Wang, Young, & Panjer, 1997); (Hurlimann, 1998); (Wang & Young, 

1998) and so on. Most of these studies only emphasised on reasonable and desirable 

properties and characteristics insurance premium should possess and satisfy. In other words, 
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they were based on expected utility principles and dual theory. According to (Mallappa & 

Talawar, 2020), the Pmax (maximum premium or consideration that a particular insured is 

willing to give the insurer) can best be determined by applying the concepts of utility theory 

by looking into different utility functions following the assumptions of insurance random 

variables to apply. For actuaries, one of the most important objectives in insurance industry is 

how to apply suitable principles and models for premium calculation because the premium 

reflects loading(expenses), selection and certain expected estimated claims(Buhlmann, 1970). 

An insurer sets different premiums for different risks attached to different insurance policies. 

This is necessary in an insurance contract in order for it to be mutually advantageous and fair 

to both the insured and the insurance company because premium calculation is individually 

and differently affected by mortality, interest rate, loading (expenses), age, sex, utility 

function, moral hazard and so on.  

3. Input-Output System of Insurance Activities. 

3.1 Insurance as a Dynamic System 

Insurance companies generate their revenue majorly from the premium they charge the 

insured for insurance coverage and from the effective/efficient investment of the premium to 

yield returns. The premium charged by insurers can be placed into savings account for safety 

of funds but that will not be totally advisable because of exposure of funds to inflationary 

risk. Alternatively, insurance premium can be invested in short-term assets or investment such 

as treasury bills, interest-bearing cash equivalents, high-grade cooperate bonds and so on. 

Application of an effective risk or loss management model in an insurance company brings in 

more revenue for the insurer and less conditional pay-outs of claims to the insured. The 

premium and other revenue of insurance company represent the input while the output 

represents the claim handling costs and other insurance costs incurred by the insurer. 

Therefore, it will not be wrong to state that the insurance activities follow input-output 

systems as shown in Figure 1. 

Underwriting is an important concept in premium calculation. The insurer will charge 

the insured inappropriately (more or less) for a particular risk if good underwriting skill is not 

applied. In other words, without good underwriting practice, the insurer may undercharge an 

insured with under-average or substandard risk while overcharging the less risky situations.  

 

 

Figure 1: Insurance as a Dynamic System 
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3.2 Insurance Premium Model 

The insurance company business models are based around various assumptions and 

diversifications of risks which entail pooling of insured risks and spreading of these risks 

across larger portfolios. Therefore, a qualified actuary in an insurance company must make 

use of an appropriate insurance loss model to price a risk, otherwise the insurer will likely be 

in a ruin. For instance, if too much hurricane insurance is written using a model that assumes 

no or low chance of hurricane inflicting environment, such insurance company may be pushed 

into a ruin if unimaginable havoc wrecking hurricane occurs. That is, the insurer company 

may be pushed out of business if the hurricane hits the insured region. Let’s assume a market 

for motor insurance where the insured are identical except for the time and the probabilities of 

loss (accident) occurrence that differ. If there are L insured where L = 1, 2, …, m.  

  

              

 

 

The insured’s (L’s) probability of loss is denoted by PL є [0, 1] as the occurrence of 

losses is independent among the insured. If an insured with a wealth premium of m is 

involved in an accident (loss) worth N naira with Y naira full cost of insurance and purchased 

by L insured, then the insurer will expect a profit of  ₦(Y - PL N). If  ₦YL is the cost of 

insurance policy paid to L insured who suffered losses, the goal of the insurer would be to 

determine for each  L=1,2,…, m the appropriate price using a suitable model for insurance 

policy L because if YL  is less than PL N , selling such policy will result to a loss , thereby, 

leading the insurance supply of the policy to be equalled to zero. In other words, the supply of 

such policy will be infinite or desirable if the YL is greater than the PL N. It will be a 

breakeven on each policy L at the point where PL N = YL.   

It will be interesting to note that when cost of insurance increases drastically, it will 

bring more profit for insurer but the expected utility an insured gets from purchasing the 

policy will decrease in that same manner in most cases because it will appear to the proposed 

insured that it will be of no or low use to procure such insurance policy when compared to 

other loss prevention techniques. The remaining insured who will continue to buy the 

insurance policy at any cost are those who have no other loss prevention options or those who 

their estimated cost of not insuring at that premium is way higher than when insured. In a 

nutshell, at an increased cost of procuring insurance policy, it becomes riskier for the insurer 

because of the composition of the pool of the insured at that time. It must also be noted that 

just as it is riskier for increased cost, it is absolutely riskier when an insurer is undercharging 

the insured in order to get high patronage. Apart from the insurer risking a situation of not 

meeting the claim demand of the insured which can dent the image or goodwill of such 

insurer, it will also have a greater adverse/negative effect on the profit maximisation goal of 

the insurance company which will in turn outweighs the positive influence of the patronage 

benefits. Therefore, there is a need to strike a balance in charging an appropriate and equitable 

premium by applying a suitable loss model that gives a sufficient uniquely determined 
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solution that will not necessarily put an insurer in an uncertain awkward business situations. 

This research will employ fixed point theorem to achieve this aim. 

 

4. Application of Fixed Point Theorem in Insurance. 

4.1 preliminaries 

Fixed point theorem has been applied in different aspects or areas of sciences, 

especially in engineering. It has been used extensively in Mathematics to solve equations, 

simulate and approximate especially in game theory. It is also used in economics to determine 

and investigate the point of equilibrium in demand and supply functions. It has helped many 

economists to understand complex problems in the generic economic models like 

computation/stability, comparative statics, and robustness of marginal change.  

Let us consider 2 vector random variables p and q with a and b categories; 

  ∑cij(dij − piqj) = 0, i = 1,2,… , a

b

j=1

 

  ∑cij(dij − piqj) = 0, j = 1,2, … , b

a

i=1

 

Where:  dij = observed loss costs 

cij = earned risk exposure 

The relatives pi and qj are unknown as the system contains a+b equations. Let us 

consider a vector equation; 

    Ω(g) = 0      (4.1) 

Where Ω : DΩ → R r ,  integer r є N  represents generic category of Euclidean space. The 

domain of Ω  is DΩ ⊆ R r.  From this, the corresponding vector equation is derived; 

    g = β(g)      (4.2) 

where  Dβ → R r   and the domain of β is Dβ ⊆ R r   . This leads to the formula of the 

corresponding algorithms; 

gw+1 := β(gw ), where w= 0,1,2,…   (4.3) 

The iteration formula in the form of (4.3) can be derived directly from the standard 

loss ratio method adopted by  (Borogovac, 2014). Also, the main characteristics of 

mathematically formalised rating algorithm model can be reiterated for simplicity amd 

determination of sufficient conditions for convergence of the algorithm towards a fixed point 

under typical actuarial circumstances. Let us first examine the concept of functional analysis. 

4.2 Functional Analysis 

For g = (g1, …,gr) є R r  , the functions defined by: 

 ║g ║x ≔ ( f1
x +⋯+ fr

x )
1
x⁄  , for x ˃ 1 

 ║g ║x  ≔│g1│+ … + │gr│ and 

 ║g ║∞  ≔ max {│g1│+ … + │gr│} 

are considered norms in R r  . Euclidean norm is derived when x=2. Thus ║g ║∞  ≤  ║g ║x  ≤  

║g ║1  .  Since all norms in R r  are the same, the convergence of the sequence  {gw}⊆ R r   
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∑ 

𝑎

𝑖=1

∑ ∑ℎ𝑖𝑗𝑘

𝑐

𝑘=1

 
𝑏

𝑗=1
 

 

towards  one norm means the same as the convergence towards g̅  (same vector of another 

norms). The norm of a linear mapping N : R b → R a  is defined by 

 ║N ║  ≔ SUP
  gє R r−{0}  

║Ng ║

║g ║
 

In this research, we will concentrate on ║● ║1  and ║● ║∞  since all norms in R r   

have the same representation. If  : Dβ → R r   ,  ⩝ Dβ ⊆ R r    , is differentiable at   p є Dβ , then 

 Jβ (p) =     
α (β1,…,βr)

α (p1,…,pr)
   represents the Jacobi Matrix at p. 

 Therefore,  

   Jβ (p) =     

(

 
 

  α β1(p)  

 α p1
⋯

  α β1(p)  

 α pr

⋮ ⋱ ⋮
  α βr(p)  

 α p1
⋯

  α βr(p)  

 α pr )

 
 

   

 For matrix norms  ║● ║1    and   ║● ║∞  , we can derive : 

 ║Jβ (p) ║1    =  max
j=1,…,r

{│
 α β1(p)

 α pj
│ +⋯+ │

 α βr(p)

α pj
│}   (4.4) 

and 

 ║Jβ (p) ║∞    =  max
i=1,…,r

{│
 α βi

(p)

 α p1
│ +⋯+ │

 α βi
(p)

α pr
│}   (4.5) 

Recall U⊆ R r   denotes a convex set if (g, f Є U, w є[ 0, 1 ] ) →wg + (1 – w)f є U     

4.3 Rating Model 

The risk factors measure the risk space or risk cell set. Here we will consider three risk 

factors or classification variables which will be represented by vectors below; 

  p =( p1, p2, … , pa), q = (q1, q2, … , qb), r = (r1, r2, … , rc) 

where pi, qj and rk  are not less than or equal to zero for 

i=1,…,a;   j=1,…,b   and  k=1, …, c     (4.6) 

In this case, the set satisfying (4.6) is Do ⊂ R a+b+c. 

The risks (pi, qj and rk) are assigned to cells i, j and k. We derive a plane in the risk 

space if we assume one index is fixed. The cell with the maximum risk exposure or statistical 

credibility is taggged the base cell. The model is multiplicative since the since the base rate 

(d111) corresponds to the cell (1,1,1) . That is, the rate by the triplet risks (pi, qj and rk) is 

calculated by; 

 dijk = d111 piqjrk        (4.7) 

From (4.7),  p1=1,  q1=1  and r1=1.  Hence 1= p1=q1=r1 

If H= (hijk)apbpc , where hijk ≥ 0, represents trended and fully developed insurance losses in 

Nigeria. hijk denotes projected or expected loss in ₦aira in the cell i,j,k. based on previous loss 

experience, the projected insurance losses hijk can be derived. The total projected or expected 

insurance loss can be expressed as; 

  H =  
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The corresponding earned risk exposures (L) can now be expressed as; 

  L=  (lijk)apbpc , where lijk ≥ 0 

lijk  represents the units of insurance in the cell (i, j and k) sold, as both H and L denote 

the insurance business past experience information using (4.7). Risk exposure serves as a 

necessary and expected positive condition in insurance practice. Therefore, without loss of 

generality, 

  hijk ≥ 0 → lijk ≥ 0       (4.8) 

Rating model is important and necessary in actuarial application because it helps to 

adjust available rates to suit the information given by H and L. Intuitively, the adjusted risk or 

indicated factors or variables are represented by; 

p̂=( p̂1, p̂2,…, p̂a),  q̂=( q̂1, q̂2,…, q̂b)   and    r̂=( r̂1, r̂2,…, r̂c) 

The corresponding indicated rates are represented by; 

  d̂ijk = d̂111 piqjrk       (4.9) 

Summing loss amount, having kept fixed one index at a time, the vector of losses for factor p 

is denoted by hp . 

  hi
p
 = ∑ ∑ hijk

c
k=1   i = 1,2, … , ab

j=1       (4.10) 

Also, hj
q
 and hk

r  represent loss vectors for factors q and r  respectively.  

Invariably, 

H=∑ hi
pa

i=1  =  ∑ hj
qb

j=1  =  ∑ hk
rc

k=1  

The adjusted risk exposure of factor p can now be defined as; 

 Li
p
 = ∑ ∑ lijkqjrk

c
k=1   i = 1,2, … , ab

j=1      (4.11) 

Then the equivalent loss costs for factor p is represented by 

 Hi
p
 =  

hi
p

L
i
p
 
, i = 1,2,…,a       (4.12) 

This leads to the derivation of the following indicated factors; 

 pî = 
Hi
p

H1
p, i = 1,2,…,a       (4.13) 

 qĵ = 
Hj
q

H1
q j = 1,2,…,b 

 rk̂ = 
Hk
r

H1
r , k = 1,2,…,c 

The formulae calculated the indicated factors for p̂, q̂ and  r̂ using exposures and 

losses as inputs. This is the standard loss ratio method which has made actuarial work easier 

in calculating the indicated rates and factors without the need for insurance premiums. 

Previously, calculating indicated rates and factors without insurance premium value was 

nearly and practically impossible as confirmed by (Brown & Gottlieb, 2001). In the same 

vein, indicated base rate is denoted by; 

 d̂111 = 
H

PR

1

∑  a
i=1 ∑ ∑ p̂iq̂jr̂klijk

c
k=1  b

j=1

      (4.14) 

Where PR= loss ratio permissible. 

Comparing (4.9) and (4.14), indicated rates can be obtained in terms of indicated factors 

which depend only on loss and exposure formulae 
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5. Risk Rating Algorithm and Application 

5.1 Indicated Rates/Factors 

Let us represent the current insurance risk factors by p0, q0 and r0. The relativities after 

wth iterations will be pw, qw and rw. Using formula (4.13), pi, qj and rk are wth  iteration values. 

If pî, qĵ and rk̂  are values of the next iteration which is (w+1)th iteration; 

 pî = 
hi
p

h1
p

∑  b
j=1 ∑ qjrkl1jk

c
k=1

∑  b
j=1 ∑ qjrklijk

c
k=1

       (5.1)  

 qĵ = 
hj
q

h1
q

∑  a
i=1 ∑ pirkli1k

c
k=1

∑  a
i=1 ∑ pirklijk

c
k=1

 

 rk̂  = 
hk
r

h1
r

∑  a
i=1 ∑ piqjlij1

b
j=1

∑  b
j=1 ∑ piqjlijk

c
k=1

 

If the values of the coefficients hi
p
, hj
q
, hk
r  and lijk  remain constant where ; 

 i  =  1,   2,  …,  a 

 j = 1,  2,  …,  b 

k = 1,  2,  …,  c 

we can continue to iterate repeatedly by substituting pî,   qĵ  and rk̂ for pi, qj and rk into the 

formula (5.1) so as to make the iteration process sufficiently close as; 

 pî   ≈    pi , i = 1,2,…,a 

 qĵ   ≈    qj   , j = 1,2,…,b 

 rk̂   ≈    rk  , k = 1,2,…,c 

It is now easier to compute d̂̅ijk   (the final indicated rate) upon the convergence of the 

iteration process by using (4.9), (4.13) and (4.14) 

5.2 Uniqueness of Determined Solutions in Actuarial Practice. 

To prove that our rating algorithm converges to a unique solution, Brouwer’s Fixed 

Point Theorem will be recalled by restating the following: 

Lemma 5.1: There exists a point g̅ such that β(g̅) = g̅ for continuous function β mapping a 

convex and compact set U of an Euclidean space into itself. 

 It must be noted that under the condition of Brouwer’s Theorem, there is no guarantee for the 

uniqueness of the fixed point g̅. 

Theorem 5.2: If arrays H = (hijk)apbpc and L=  (lijk)apbpc  are positive values satisfying the 

following: 

(1) h1
p
   ˃   0,   h1

q
   ˃   0 and   h1

r    ˃   0;  

(2) lijk   ˃   0, where i = 1,2,…,a;  j = 1,2,…,b;  k = 1,2,…,c 

As defined in (5.1), it contains at least one solution  g̅ є Ra+b+c   where Ra+b+c, Ra , Rb  and  Rc 

are all Euclidean spaces. The vector g≔ (p; q; r) ≔(p1,…, pa ; q1,…,qb  ; r1,…,rc) є R a+b+c  

and the function β: R a+b+c → R a+b+c  can be introduced as: 

βi(g̅)    = 
hi
p

h1
p

∑  b
j=1 ∑ qjrkl1jk

c
k=1

∑  b
j=1 ∑ qjrklijk

c
k=1

, i=1,2,…,a.    (5.2) 
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βa+j(g̅)   = 
hj
q

h1
q

∑  a
i=1 ∑ pirkli1k

c
k=1

∑  a
i=1 ∑ pirklijk

c
k=1

, j = 1,2,…,b   

βa+b+k(g̅)= 
hk
r

h1
r

∑  a
i=1 ∑ piqjlij1

b
j=1

∑  b
j=1 ∑ piqjlijk

c
k=1

, k = 1,2,…,c   

where the denominators of βi , βa+j  and βa+b+k    ≠ 0 for the continuous vector functions. 

Given that: θi
p
≔ min { lijk:     j = 1,… , b ; k = 1,… , c}, 

  Ni
p
≔ max { lijk:    j = 1,… , b ; k = 1,… , c},  i = 1, ..., a; 

  θj
q
≔ min { lijk:     i = 1,… , a ; k = 1, … , c}, 

  Nj
q
≔ max { lijk:    i = 1,… , a ; k = 1, … , c},  j =1, ..., b; 

  θk
r≔ min { lijk:   i = 1,… , a ;  j = 1, … , b }, 

  Nk
r≔ max { lijk:  i =  1, . . . , a;   j = 1,… , b },            k = 1,… , c  

Without loss of generality, the second condition stated ealier is the same as   θi
p
 ,  θj

q
 and  θk

r    

where i =  1, . . . , a;   j = 1,… , b and k = 1,… , c respectively. Taking a closer look at this 

condition, the values of  lijk   must not be equal to zero in any circumstance otherwise the box 

U will not be bounded and β(g̅) will not be a continuous function because if lijk =0, it 

obviously means that θi
p
= θj

q
= θk

r = 0. The implication is that the Brouwer’s Fixed Point 

Theorem will be unfulfilled. 

Invariably; 
hi
p
θ1
p

h1
p
N
i
p    ≤    βi     ≤ 

hi
p
N1
p

h1
p
θ
i
p ,  i = 1, ..., a.   (5.3) 

  
hj
q
θ1
q

h1
q
N
j
q    ≤   βa+j    ≤ 

hj
q
N1
q

h1
q
θ
j
q , j = 1,… , b 

  
hk
rθ1
r

h1
rNk

r     ≤   βa+b+k  ≤ 
hk
rN1

r

h1
rθk
r , k = 1,… , c 

As defined by the inequalities in (5.3) , 

the vector {β1,…, βa ;   βa+1,…, βa+b  ;   βa+b+1,…, βa+b+c}  ⊑  U ⊆  R a+b+c  .  

Also, formula (5.2) maps initial guess g0 ≔ ( p0; q0 ;r0) into U and maps U into itself by 

applying formula (5.3). Then, Box U (bounded and closed) is a convex and compact set in the 

Euclidean space with the continuous function β. Therefore, all conditions of Lemma 5.1 are 

now satisfied. Hence, by the function defined by (5.2), there exists a fixed point  g̅  such that 

β(g̅) = g̅. Therefore, the theorem is proved. 

In order to sufficiently discuss the uniqueness of solution, let us further consider Lemma 5.3. 

Lemma 5.3: If  β: U → Rr  denotes a differentiable continuous function in U ⊆ Rr  (a convex 

set) and if  Π (a constant positive number less than one) exists such that Rr    holds for 

any norm; ║Jβ (g) ║ ≤  Π, ⩝  g є U, then β has g̅ (a unique fixed point) in U. 

We can now confidently say that for any initial guess g0 chosen in U, the iteration (4.3)  

converges to  g̅  є  Rr . To guarantee this uniqueness, let us obtain Jacobi Matrix ( Jβ). 

Recall; g ≔ (p; q; r) ≔  (p1,…, pa ; q1,…,qb  ; r1,…,rc) є R a+b+c 

 Jβ=  
α(β1,…,βa ; βa+1,…,βa+b  ; βa+b+1,…,βa+b+c)

α(p1,…,pa ; q1,…,qb  ; r1,…,rc) 
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Where;  

α(β1,…,βa)

α(q1,…,qb)
=

(

 
 
    

0
  α β1  

 α q2
⋯

  α β1   

 α qb

⋮ ⋮ ⋱ ⋮

0
  α βa   

 α q2
⋯

  α βa   

 α qb )

 
 

 

αβi
αqj

    = 
hi
p
α( ∑  b

j=1 ∑ qjrkl1jk)
c
k=1  

h1
p
 αqj( 

∑  b
j=1 ∑ qjrklijk

c
k=1  )

 

αβi
αqj

   = 
hi
p

h1
p

( ∑ rkl1jk
c
k=1   ) ∑  b

j=1 ∑ qjrklijk
c
k=1  −  ( ∑ rklijk

c
k=1   )∑  b

j=1 ∑ qjrkl1jk
c
k=1

(  ∑  b
j=1 ∑ qjrklijk

c
k=1  )2

  (5.4) 

If   
α(β1,…,βa)

α(p1,…,pa)
 = 

α(βa+1,…,βa+b)

α(q1,…,qb )
 = 

α(βa+b+1,…,βa+b+c)

α(r1,…,rc)
 =0, 

then the Jacobi Matrix ( Jβ ) is represented by: 

 Jβ= 

(

 
 
  

0
α(β1,…,βa)

α(q1,…,qb )

α(β1,…,βa)

α(r1,…,rc)

α(βa+1,…,βa+b)

α(p1,…,pa)
0

α(βa+1,…,βa+b)

α(r1,…,rc)

α(βa+b+1,…,βa+b+c)

α(p1,…,pa)

α(βa+b+1,…,βa+b+c)

α(q1,…,qb )
0 )

 
 

  (5.5) 

Thus, if  0  ≤ 
αβi
αqj

 , minimising the denominator and maximising the numerator in (5.3), we 

obtain; 

 

 hi
p
 (N1

p
∑ rk
c
k=1    ) (Ni

p
∑ qj
b
j=1  ∑ rk

c
k=1     ) −  (  θ1

p
∑ rk
c
k=1   ) ( θi

p
∑ qj
b
j=1  ∑ rk

c
k=1   )

  h1
p
(θ
i
p
∑ qj
b
j=1  ∑ rk

c
k=1   )

≥
αβi
αqj

  

Alternatively, we get; 

  
 hi
p
(N1
p
 Ni
p
−  θ1

p
  θi
p
)   

 h1
p
 ( θ

i
p
  )2   ∑ qj

b
j=1         

   ≥   │
αβi
αqj

 │ 

It follows the same pattern if we apply the obtained result in the second and third inequalities 

in (5.3). Therefore, in every vector, g={p1,…, pa ; q1,…,qb  ; r1,…,rc} є U ⊆  R a+b+c, 

Π∞
i ≔   

 hi
p
(N1
p
 Ni
p
−  θ1

p
  θi
p
)  

 h1
p
 ( θ

i
p
  )
2
 

(

  (b − 1)
h1
q

   θ1
q
 ∑

h
j
q

N
j
q

b
j=1   

  − (c − 1)
h1
r

 θ1
r  ∑

hk
r

Nk
r

c
k=1  

 

)

     ≥     

  

   ∑   │
αβi
αqj
 │b

j=1       +      ∑ │
αβi
αrk
│c

k=1  

Similarly,  Π∞
j

 and Π∞
k  follow the same pattern where ; 

 Π∞ ≔ max
i,j,k
{ Π∞

i ,   Π∞
j
, Π∞

k    }  

Consequently, applying both ( 4.5) and (5.5), we derive; 

║Jβ ║∞ ≔max
i,j,k

  {∑ │
 α βi
 α qj

│ +      ∑ │
 α βi
 α rk

│;       ∑ │
 α βa+j

 α pi
│ +a

i=1
c
k=1

b
j=1 ∑ │

 α βa+j

 α rk
│; c

k=1  

  ∑ │
 α βa+b+k

 α pi
│ +a

i=1   ∑ │
 α βa+b+k

 α qj
│b

j=1 } 
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It is now crystal clear that Π∞ ≥ ║Jβ ║∞ . Therefore, function (5.2) possesses a unique fixed 

point and the algorithm (5.1) converges to the point as shown in Lemma (5.3) if 1 ˃ Π∞.  

5.3 Sufficient Conditions for Algorithm Convergence 

The next thing to do now is to examine the following theorems to prove the sufficient 

conditions for convergence of the iteration process of our algorithm in the formula (5.1) 

Theorem 5.4: if  Π∞ <   1 and conditions of the Theorem (5.2) satisfied, the function defined 

by  (5.2) will have a unique fixed point and for any initial guess g0 in D0, the algorithm (5.1) 

will converge towards that point. 

 

Similarly, ║Jβ ║1   can also be obtained as; 

║Jβ ║1   = max
i,j,k

  {∑ │
 α βa+j

 α pi
│ + ∑ │

 α βa+b+k

 α pi
│;       ∑ │

 α βi
 α qj

│ +a
i=1

c
k=1

b
j=1 ∑ │

 α βa+b+k

 α qj
│; c

k=1  

  ∑ │
 α βi
 α rk

│ +a
i=1   ∑ │

 α βa+j

 α rk
│b

j=1 } 

Therefore, 

Π1
i  ≔  

h1
p

 θ1
p
 ∑

h1
p

N
i
p

a
i=1  

 {∑
hj
q
(N1
q
 Nj
q
−  θ1

q
  θj
q
) 

h1
q
 ( θ

j
q
  )2

b
j=1  + ∑

hk
r (N1

r  Nk
r−  θ1

r   θk
r ) 

h1
r  ( θk

r   )2
c
k=1 } ≥  

∑ │
 α βa+j

 α pi
│ + ∑ │

 α βa+b+k

 α pi
│c

k=1
b
j=1 ,  ⩝ i=1,...,m. 

In this same way, Π1
j
 and  Π1

k  can be obtained. Thus; 

 Π1 ≔ max
i,j,k
{ Π1

i ,   Π1
j
, Π1

k   } 

The following statements follow as Π1  ≥   ║Jβ ║1 : 

Theorem 5.5: Assuming the conditions of Theorem 5.2 satisfied; 

(1) The function defined by formula (5.2) has a unique fixed point and the algorithm 

5.1 converges towards the point for any initial guess g0  in D0 if 1 > Π1 

(2) The function β given by (5.2) also has a unique fixed point and the algorithm 5.1 

converges towards the point for any initial guess g0  in D0 if 1 > min{Π1, Π∞}≕Π 

To significantly simplify these statements and derivations, we will introduce 𝜃  and N  as ; 

𝜃 ≔ min{lijk: i = 1,… , a ; j = 1,… , b ; k = 1, … , c  } 

N ≔ max{lijk: i = 1,… , a ; j = 1,… , b ; k = 1,… , c  } 

Then; 
Nh1

q

Hθ
  ≥   

1

∑
h
j
q
 θ1
q
 

h1
q
 N
j
q

b

j=1

   ≥   
1

∑ qk
b

k=1

 and   
 hi
p
h1
q
N( N2−  θ2)  

h1
p
 θ3H

     ≥    
 α βi
 α qj

  

5.4 Conclusion 

By repeating the proof of Theorem 5.4 assuming the conditions of Theorem 5.2 satisfied and  

1>
−N( θ2− N2)  

 θ3H
max
i,j,k

{
(b−1)hi

p
h1
q
+(c−1) hi

p
h1
r

h1
p ;

(a−1)hj
q
h1
p
+(c−1)hj

q
h1
r

h1
q ;   

(a−1)hk
rh1
p
 +  (b−1)hk

rh1
q

h1
r } ≕ d∞ , 
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the function defined by formula 5.2 and the algorithm 5.1 have a unique fixed point 

and converge towards that point for any initial guess g0  in D0 . By also repeating the proof of 

Theorem 5.5 with  N and  𝜃  assuming the conditions of Theorem 5.2 satisfied and  

1  >  
−𝑁( 𝜃2− 𝑁2)  

 𝜃3
 𝑚𝑎𝑥 {  

ℎ1
𝑝

ℎ1
𝑞
 
+ 

ℎ1
𝑝

ℎ1
𝑟 ;          

ℎ1
𝑞

ℎ1
𝑝  +  

ℎ1
𝑞

ℎ1
𝑟 ;          

ℎ1
𝑟

ℎ1
𝑝   +  

ℎ1
𝑟

ℎ1
𝑞}    ≕   𝑑1 , 

then the function defined by formula (5.2) has a unique fixed point and the algorithm 

5.1 converges towards the point for any initial guess g0  in D0 . 

Consequently, if 1 > 𝑚𝑖𝑛{𝑑1, 𝑑∞}≕d, the function β   by  (5.2) has a unique fixed point 

while the algorithm in (5.1) converges towards that point for any initial guess in  g0  chosen in 

D0.  

Note that the Class i  for M > 3 risk classification variables shown in (4.10) and (4.11) will be 

denoted as; 

ℎ𝑖
𝑝
 ≔ ∑ .  .  .  ∑ ℎ𝑖𝑗 .  .  .  𝑘

𝑐
𝑘=1 ,           𝑖 = 1,2, … , 𝑎𝑏

𝑗=1    (5.6) 

 𝐿𝑖
𝑝
 ≔ ∑  .  .  . ∑ 𝑙𝑖𝑗𝑘 𝑞𝑗 .  .  . 𝑟𝑘

𝑐
𝑘=1 , 𝑖 = 1,2, … , 𝑎𝑏

𝑗=1    (5.7)   

Both (5.6) and (5.7) pointed to the fact that ommission only occurs to summation by ith  index 

corresponding to factor p. Same can be said for other risk factors (q=(q1, . . 

.,qb),...,r=(r1,...,rc)). That is to say, summation by the corresponding indices disappear as 

indicated in (5.6) and (5.7). 

In the same vein, we can also generalise functions (βi , . . . ,  βa+j , . . . ,  βa+b+ . . .+k ) indicated in 

(5.2) as; 

 βi    = 
ℎ𝑖
𝑝

ℎ1
𝑝

∑  .  .  .  𝑏
𝑗=1 ∑ 𝑙1𝑗𝑘 .  .  .  𝑞𝑗 .  .  .  𝑟𝑘

𝑐
𝑘=1

∑  𝑏
𝑗=1 .  .  .  ∑ 𝑙𝑖𝑗𝑘

𝑐
𝑘=1  𝑞𝑗 .  .  .  𝑟𝑘

, i=1,2,…,a 

 βa+j   = 
ℎ𝑗
𝑞

ℎ1
𝑞

∑  𝑎
𝑖=1 .  .  .  ∑ 𝑙𝑖1𝑘 .  .  .  𝑝𝑖 .  .  .  𝑟𝑘

𝑐
𝑘=1

∑  a
𝑖=1 .  .  .  ∑ lijk

c
k=1 .  .  .  pi .  .  .  rk

, j = 1,2,…,b 

 βa+b+k = 
hk
r

h1
r

∑  .  .  .  a
i=1 ∑ lij1 .  .  .  pi .  .  .  qj

b
j=1

∑  b
j=1 .  .  .  ∑ lijk .  .  .  pi .  .  .qj

c
k=1

,  k = 1,2,…,c 

Finally, all other formulae can be generalised in this same manner in order to make them 

straightforward and simplified. 

 

References: 

Borogovac, M. (2014). Comparison of the Standard Rating Methods and the New General 

Rating Formula. . SOA ARCH 2014.1 Proceedings. 

Brown, R., & Gottlieb, L. (2001). Introduction to Ratemaking and Loss Reserving for 

Property and Casualty Insurance (2nd ed.). Winsted,Connecticut: ACTEX 

Publications. 

Buhmann, H. (1970). Mathematics Methods in Risk Theory. . Berlin, Germany: Springer-

Verlag.  

Fu, L., & Wu, C. (2005). General Iteration Algorithm for Classification Ratemaking. Casualty 

Actuarial Society Forum Winter 2005.  

Goovaerts, M., De Vylder, F., & Haezendonck, J. (1984). Insurance Premiums: Theory and 

Application. North-Holland, Amsterdam. 

https://doi.org/10.56830/IJNZ1133


International Journal of Accounting and Management Sciences 
Vol.2 No.1 January 2023 

Print ISSN: 2834-8923 Online ISSN: 2832-8175 
DOI: https://doi.org/10.56830/IJNZ1133 

 

(102) On Application of Fixed Point Theorem to ….…ABIOLA, Bankole Pp.89-102 

Hurlimann, W. (1997). On Quasi-Mean Value Principles. Blatter der Deutschen Gesellschaft 

fur Versicherungsmathematik. XXIII, 1 – 16. 

Hurlimann, W. (1998). On Stop-Loss Order and the Distortions Pricing Principles. ASTIN 

Bulletin, 28(2), 119 – 134. 

Istratescu, V. (1981). Fixed Point Theory. Dordrecht,Netherlands:. Reidel Publishing 

Company. 

Khalehoghli, S., Rahimi, H., & Gordji, M. (2020). Fixed Point Theorem in R-Metric Spaces 

with Applications. AIMS Mathematics, 5(4),312 – 315. 

Mallappa, M., & Talawar, A. (2020). Premium Calculation for Different Loss Discret 

Analogues of Continuous Distributions Utility Theory. . International Journal 

Agricultural Statistics Science,, 16(1), 61 – 72. 

Nash, J. (1951). Non Cooperative Games. . Annals of Mathematics, 54(2),286 - 295. 

Nieto, J., & Guez-Lo’pez, R. (2005). Contractive Mapping Theorems in Partially Ordere Sets 

and Application to Ordinary Differential Equations. . Order, 22, 223 – 239. 

Rajic, V., Azdejkovic, D., & Loncar, D. (2014). Fixed Point Theory and Possibilities 

Application in Different Fields of an Economy. Original Scientific Article 

UDK:330.42:515.126.4. DOI: 10.5937/ekopre1408382R. Retrieved on 21st March 

2020, GMT 21:00 from https://www.researchgate.net/publication/283393893. 

Von-Neumann, J. (1928). On the Theory of Games of Strategy. Mathematisch Annalen, 

100,295 – 320. 

Wang, S., & Young, V. R. (1998). Ordering of Risks: Utility Theory Verse Yaari’s Dua 

Theory of Risk. Mathematics and Economics, 23,1 – 14. 

Wang, S., Young, V., & Panjer, H. (1997). Axiomatic Characterisation of Insurance Prices. 

Mathematics and Economics, 21, 173 – 183. 

 

https://doi.org/10.56830/IJNZ1133

